You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
5.0 KiB
184 lines
5.0 KiB
14 years ago
|
=pod
|
||
|
|
||
|
=head1 NAME
|
||
|
|
||
|
rsautl - RSA utility
|
||
|
|
||
|
=head1 SYNOPSIS
|
||
|
|
||
|
B<openssl> B<rsautl>
|
||
|
[B<-in file>]
|
||
|
[B<-out file>]
|
||
|
[B<-inkey file>]
|
||
|
[B<-pubin>]
|
||
|
[B<-certin>]
|
||
|
[B<-sign>]
|
||
|
[B<-verify>]
|
||
|
[B<-encrypt>]
|
||
|
[B<-decrypt>]
|
||
|
[B<-pkcs>]
|
||
|
[B<-ssl>]
|
||
|
[B<-raw>]
|
||
|
[B<-hexdump>]
|
||
|
[B<-asn1parse>]
|
||
|
|
||
|
=head1 DESCRIPTION
|
||
|
|
||
|
The B<rsautl> command can be used to sign, verify, encrypt and decrypt
|
||
|
data using the RSA algorithm.
|
||
|
|
||
|
=head1 COMMAND OPTIONS
|
||
|
|
||
|
=over 4
|
||
|
|
||
|
=item B<-in filename>
|
||
|
|
||
|
This specifies the input filename to read data from or standard input
|
||
|
if this option is not specified.
|
||
|
|
||
|
=item B<-out filename>
|
||
|
|
||
|
specifies the output filename to write to or standard output by
|
||
|
default.
|
||
|
|
||
|
=item B<-inkey file>
|
||
|
|
||
|
the input key file, by default it should be an RSA private key.
|
||
|
|
||
|
=item B<-pubin>
|
||
|
|
||
|
the input file is an RSA public key.
|
||
|
|
||
|
=item B<-certin>
|
||
|
|
||
|
the input is a certificate containing an RSA public key.
|
||
|
|
||
|
=item B<-sign>
|
||
|
|
||
|
sign the input data and output the signed result. This requires
|
||
|
and RSA private key.
|
||
|
|
||
|
=item B<-verify>
|
||
|
|
||
|
verify the input data and output the recovered data.
|
||
|
|
||
|
=item B<-encrypt>
|
||
|
|
||
|
encrypt the input data using an RSA public key.
|
||
|
|
||
|
=item B<-decrypt>
|
||
|
|
||
|
decrypt the input data using an RSA private key.
|
||
|
|
||
|
=item B<-pkcs, -oaep, -ssl, -raw>
|
||
|
|
||
|
the padding to use: PKCS#1 v1.5 (the default), PKCS#1 OAEP,
|
||
|
special padding used in SSL v2 backwards compatible handshakes,
|
||
|
or no padding, respectively.
|
||
|
For signatures, only B<-pkcs> and B<-raw> can be used.
|
||
|
|
||
|
=item B<-hexdump>
|
||
|
|
||
|
hex dump the output data.
|
||
|
|
||
|
=item B<-asn1parse>
|
||
|
|
||
|
asn1parse the output data, this is useful when combined with the
|
||
|
B<-verify> option.
|
||
|
|
||
|
=back
|
||
|
|
||
|
=head1 NOTES
|
||
|
|
||
|
B<rsautl> because it uses the RSA algorithm directly can only be
|
||
|
used to sign or verify small pieces of data.
|
||
|
|
||
|
=head1 EXAMPLES
|
||
|
|
||
|
Sign some data using a private key:
|
||
|
|
||
|
openssl rsautl -sign -in file -inkey key.pem -out sig
|
||
|
|
||
|
Recover the signed data
|
||
|
|
||
|
openssl rsautl -verify -in sig -inkey key.pem
|
||
|
|
||
|
Examine the raw signed data:
|
||
|
|
||
|
openssl rsautl -verify -in file -inkey key.pem -raw -hexdump
|
||
|
|
||
|
0000 - 00 01 ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
|
||
|
0010 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
|
||
|
0020 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
|
||
|
0030 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
|
||
|
0040 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
|
||
|
0050 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
|
||
|
0060 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
|
||
|
0070 - ff ff ff ff 00 68 65 6c-6c 6f 20 77 6f 72 6c 64 .....hello world
|
||
|
|
||
|
The PKCS#1 block formatting is evident from this. If this was done using
|
||
|
encrypt and decrypt the block would have been of type 2 (the second byte)
|
||
|
and random padding data visible instead of the 0xff bytes.
|
||
|
|
||
|
It is possible to analyse the signature of certificates using this
|
||
|
utility in conjunction with B<asn1parse>. Consider the self signed
|
||
|
example in certs/pca-cert.pem . Running B<asn1parse> as follows yields:
|
||
|
|
||
|
openssl asn1parse -in pca-cert.pem
|
||
|
|
||
|
0:d=0 hl=4 l= 742 cons: SEQUENCE
|
||
|
4:d=1 hl=4 l= 591 cons: SEQUENCE
|
||
|
8:d=2 hl=2 l= 3 cons: cont [ 0 ]
|
||
|
10:d=3 hl=2 l= 1 prim: INTEGER :02
|
||
|
13:d=2 hl=2 l= 1 prim: INTEGER :00
|
||
|
16:d=2 hl=2 l= 13 cons: SEQUENCE
|
||
|
18:d=3 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
|
||
|
29:d=3 hl=2 l= 0 prim: NULL
|
||
|
31:d=2 hl=2 l= 92 cons: SEQUENCE
|
||
|
33:d=3 hl=2 l= 11 cons: SET
|
||
|
35:d=4 hl=2 l= 9 cons: SEQUENCE
|
||
|
37:d=5 hl=2 l= 3 prim: OBJECT :countryName
|
||
|
42:d=5 hl=2 l= 2 prim: PRINTABLESTRING :AU
|
||
|
....
|
||
|
599:d=1 hl=2 l= 13 cons: SEQUENCE
|
||
|
601:d=2 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
|
||
|
612:d=2 hl=2 l= 0 prim: NULL
|
||
|
614:d=1 hl=3 l= 129 prim: BIT STRING
|
||
|
|
||
|
|
||
|
The final BIT STRING contains the actual signature. It can be extracted with:
|
||
|
|
||
|
openssl asn1parse -in pca-cert.pem -out sig -noout -strparse 614
|
||
|
|
||
|
The certificate public key can be extracted with:
|
||
|
|
||
|
openssl x509 -in test/testx509.pem -pubkey -noout >pubkey.pem
|
||
|
|
||
|
The signature can be analysed with:
|
||
|
|
||
|
openssl rsautl -in sig -verify -asn1parse -inkey pubkey.pem -pubin
|
||
|
|
||
|
0:d=0 hl=2 l= 32 cons: SEQUENCE
|
||
|
2:d=1 hl=2 l= 12 cons: SEQUENCE
|
||
|
4:d=2 hl=2 l= 8 prim: OBJECT :md5
|
||
|
14:d=2 hl=2 l= 0 prim: NULL
|
||
|
16:d=1 hl=2 l= 16 prim: OCTET STRING
|
||
|
0000 - f3 46 9e aa 1a 4a 73 c9-37 ea 93 00 48 25 08 b5 .F...Js.7...H%..
|
||
|
|
||
|
This is the parsed version of an ASN1 DigestInfo structure. It can be seen that
|
||
|
the digest used was md5. The actual part of the certificate that was signed can
|
||
|
be extracted with:
|
||
|
|
||
|
openssl asn1parse -in pca-cert.pem -out tbs -noout -strparse 4
|
||
|
|
||
|
and its digest computed with:
|
||
|
|
||
|
openssl md5 -c tbs
|
||
|
MD5(tbs)= f3:46:9e:aa:1a:4a:73:c9:37:ea:93:00:48:25:08:b5
|
||
|
|
||
|
which it can be seen agrees with the recovered value above.
|
||
|
|
||
|
=head1 SEE ALSO
|
||
|
|
||
|
L<dgst(1)|dgst(1)>, L<rsa(1)|rsa(1)>, L<genrsa(1)|genrsa(1)>
|