новые иконки в OpenBoard
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
OpenBoard/thirdparty/google-breakpad/google-breakpad-r786/src/common/linux/dump_symbols.cc

758 lines
27 KiB

// Copyright (c) 2010 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Restructured in 2009 by: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
// dump_symbols.cc: implement google_breakpad::WriteSymbolFile:
// Find all the debugging info in a file and dump it as a Breakpad symbol file.
#include "common/linux/dump_symbols.h"
#include <assert.h>
#include <elf.h>
#include <errno.h>
#include <fcntl.h>
#include <link.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "common/dwarf/bytereader-inl.h"
#include "common/dwarf/dwarf2diehandler.h"
#include "common/dwarf_cfi_to_module.h"
#include "common/dwarf_cu_to_module.h"
#include "common/dwarf_line_to_module.h"
#include "common/linux/file_id.h"
#include "common/module.h"
#include "common/stabs_reader.h"
#include "common/stabs_to_module.h"
// This namespace contains helper functions.
namespace {
using google_breakpad::DwarfCFIToModule;
using google_breakpad::DwarfCUToModule;
using google_breakpad::DwarfLineToModule;
using google_breakpad::Module;
using google_breakpad::StabsToModule;
//
// FDWrapper
//
// Wrapper class to make sure opened file is closed.
//
class FDWrapper {
public:
explicit FDWrapper(int fd) :
fd_(fd) {}
~FDWrapper() {
if (fd_ != -1)
close(fd_);
}
int get() {
return fd_;
}
int release() {
int fd = fd_;
fd_ = -1;
return fd;
}
private:
int fd_;
};
//
// MmapWrapper
//
// Wrapper class to make sure mapped regions are unmapped.
//
class MmapWrapper {
public:
MmapWrapper() : is_set_(false) {}
~MmapWrapper() {
assert(is_set_);
if (base_ != NULL) {
assert(size_ > 0);
munmap(base_, size_);
}
}
void set(void *mapped_address, size_t mapped_size) {
is_set_ = true;
base_ = mapped_address;
size_ = mapped_size;
}
void release() {
assert(is_set_);
base_ = NULL;
size_ = 0;
}
private:
bool is_set_;
void *base_;
size_t size_;
};
// Fix offset into virtual address by adding the mapped base into offsets.
// Make life easier when want to find something by offset.
static void FixAddress(void *obj_base) {
ElfW(Addr) base = reinterpret_cast<ElfW(Addr)>(obj_base);
ElfW(Ehdr) *elf_header = static_cast<ElfW(Ehdr) *>(obj_base);
elf_header->e_phoff += base;
elf_header->e_shoff += base;
ElfW(Shdr) *sections = reinterpret_cast<ElfW(Shdr) *>(elf_header->e_shoff);
for (int i = 0; i < elf_header->e_shnum; ++i)
sections[i].sh_offset += base;
}
// Find the preferred loading address of the binary.
static ElfW(Addr) GetLoadingAddress(const ElfW(Phdr) *program_headers,
int nheader) {
for (int i = 0; i < nheader; ++i) {
const ElfW(Phdr) &header = program_headers[i];
// For executable, it is the PT_LOAD segment with offset to zero.
if (header.p_type == PT_LOAD &&
header.p_offset == 0)
return header.p_vaddr;
}
// For other types of ELF, return 0.
return 0;
}
static bool IsValidElf(const ElfW(Ehdr) *elf_header) {
return memcmp(elf_header, ELFMAG, SELFMAG) == 0;
}
static const ElfW(Shdr) *FindSectionByName(const char *name,
const ElfW(Shdr) *sections,
const ElfW(Shdr) *section_names,
int nsection) {
assert(name != NULL);
assert(sections != NULL);
assert(nsection > 0);
int name_len = strlen(name);
if (name_len == 0)
return NULL;
// Find the end of the section name section, to make sure that
// comparisons don't run off the end of the section.
const char *names_end =
reinterpret_cast<char*>(section_names->sh_offset + section_names->sh_size);
for (int i = 0; i < nsection; ++i) {
const char *section_name =
reinterpret_cast<char*>(section_names->sh_offset + sections[i].sh_name);
if (names_end - section_name >= name_len + 1 &&
strcmp(name, section_name) == 0) {
if (sections[i].sh_type == SHT_NOBITS) {
fprintf(stderr,
"Section %s found, but ignored because type=SHT_NOBITS.\n",
name);
return NULL;
}
return sections + i;
}
}
return NULL;
}
static bool LoadStabs(const ElfW(Ehdr) *elf_header,
const ElfW(Shdr) *stab_section,
const ElfW(Shdr) *stabstr_section,
const bool big_endian,
Module *module) {
// A callback object to handle data from the STABS reader.
StabsToModule handler(module);
// Find the addresses of the STABS data, and create a STABS reader object.
// On Linux, STABS entries always have 32-bit values, regardless of the
// address size of the architecture whose code they're describing, and
// the strings are always "unitized".
uint8_t *stabs = reinterpret_cast<uint8_t *>(stab_section->sh_offset);
uint8_t *stabstr = reinterpret_cast<uint8_t *>(stabstr_section->sh_offset);
google_breakpad::StabsReader reader(stabs, stab_section->sh_size,
stabstr, stabstr_section->sh_size,
big_endian, 4, true, &handler);
// Read the STABS data, and do post-processing.
if (!reader.Process())
return false;
handler.Finalize();
return true;
}
// A line-to-module loader that accepts line number info parsed by
// dwarf2reader::LineInfo and populates a Module and a line vector
// with the results.
class DumperLineToModule: public DwarfCUToModule::LineToModuleFunctor {
public:
// Create a line-to-module converter using BYTE_READER.
explicit DumperLineToModule(dwarf2reader::ByteReader *byte_reader)
: byte_reader_(byte_reader) { }
void operator()(const char *program, uint64 length,
Module *module, vector<Module::Line> *lines) {
DwarfLineToModule handler(module, lines);
dwarf2reader::LineInfo parser(program, length, byte_reader_, &handler);
parser.Start();
}
private:
dwarf2reader::ByteReader *byte_reader_;
};
static bool LoadDwarf(const string &dwarf_filename,
const ElfW(Ehdr) *elf_header,
const bool big_endian,
Module *module) {
const dwarf2reader::Endianness endianness = big_endian ?
dwarf2reader::ENDIANNESS_BIG : dwarf2reader::ENDIANNESS_LITTLE;
dwarf2reader::ByteReader byte_reader(endianness);
// Construct a context for this file.
DwarfCUToModule::FileContext file_context(dwarf_filename, module);
// Build a map of the ELF file's sections.
const ElfW(Shdr) *sections
= reinterpret_cast<ElfW(Shdr) *>(elf_header->e_shoff);
int num_sections = elf_header->e_shnum;
const ElfW(Shdr) *section_names = sections + elf_header->e_shstrndx;
for (int i = 0; i < num_sections; i++) {
const ElfW(Shdr) *section = &sections[i];
string name = reinterpret_cast<const char *>(section_names->sh_offset
+ section->sh_name);
const char *contents = reinterpret_cast<const char *>(section->sh_offset);
uint64 length = section->sh_size;
file_context.section_map[name] = std::make_pair(contents, length);
}
// Parse all the compilation units in the .debug_info section.
DumperLineToModule line_to_module(&byte_reader);
std::pair<const char *, uint64> debug_info_section
= file_context.section_map[".debug_info"];
// We should never have been called if the file doesn't have a
// .debug_info section.
assert(debug_info_section.first);
uint64 debug_info_length = debug_info_section.second;
for (uint64 offset = 0; offset < debug_info_length;) {
// Make a handler for the root DIE that populates MODULE with the
// data we find.
DwarfCUToModule::WarningReporter reporter(dwarf_filename, offset);
DwarfCUToModule root_handler(&file_context, &line_to_module, &reporter);
// Make a Dwarf2Handler that drives our DIEHandler.
dwarf2reader::DIEDispatcher die_dispatcher(&root_handler);
// Make a DWARF parser for the compilation unit at OFFSET.
dwarf2reader::CompilationUnit reader(file_context.section_map,
offset,
&byte_reader,
&die_dispatcher);
// Process the entire compilation unit; get the offset of the next.
offset += reader.Start();
}
return true;
}
// Fill REGISTER_NAMES with the register names appropriate to the
// machine architecture given in HEADER, indexed by the register
// numbers used in DWARF call frame information. Return true on
// success, or false if we don't recognize HEADER's machine
// architecture.
static bool DwarfCFIRegisterNames(const ElfW(Ehdr) *elf_header,
vector<string> *register_names) {
switch (elf_header->e_machine) {
case EM_386:
*register_names = DwarfCFIToModule::RegisterNames::I386();
return true;
case EM_ARM:
*register_names = DwarfCFIToModule::RegisterNames::ARM();
return true;
case EM_X86_64:
*register_names = DwarfCFIToModule::RegisterNames::X86_64();
return true;
default:
return false;
}
}
static bool LoadDwarfCFI(const string &dwarf_filename,
const ElfW(Ehdr) *elf_header,
const char *section_name,
const ElfW(Shdr) *section,
const bool eh_frame,
const ElfW(Shdr) *got_section,
const ElfW(Shdr) *text_section,
const bool big_endian,
Module *module) {
// Find the appropriate set of register names for this file's
// architecture.
vector<string> register_names;
if (!DwarfCFIRegisterNames(elf_header, &register_names)) {
fprintf(stderr, "%s: unrecognized ELF machine architecture '%d';"
" cannot convert DWARF call frame information\n",
dwarf_filename.c_str(), elf_header->e_machine);
return false;
}
const dwarf2reader::Endianness endianness = big_endian ?
dwarf2reader::ENDIANNESS_BIG : dwarf2reader::ENDIANNESS_LITTLE;
// Find the call frame information and its size.
const char *cfi = reinterpret_cast<const char *>(section->sh_offset);
size_t cfi_size = section->sh_size;
// Plug together the parser, handler, and their entourages.
DwarfCFIToModule::Reporter module_reporter(dwarf_filename, section_name);
DwarfCFIToModule handler(module, register_names, &module_reporter);
dwarf2reader::ByteReader byte_reader(endianness);
// Since we're using the ElfW macro, we're not actually capable of
// processing both ELF32 and ELF64 files with the same program; that
// would take a bit more work. But this will work out well enough.
if (elf_header->e_ident[EI_CLASS] == ELFCLASS32)
byte_reader.SetAddressSize(4);
else if (elf_header->e_ident[EI_CLASS] == ELFCLASS64)
byte_reader.SetAddressSize(8);
else {
fprintf(stderr, "%s: bad file class in ELF header: %d\n",
dwarf_filename.c_str(), elf_header->e_ident[EI_CLASS]);
return false;
}
// Provide the base addresses for .eh_frame encoded pointers, if
// possible.
byte_reader.SetCFIDataBase(section->sh_addr, cfi);
if (got_section)
byte_reader.SetDataBase(got_section->sh_addr);
if (text_section)
byte_reader.SetTextBase(text_section->sh_addr);
dwarf2reader::CallFrameInfo::Reporter dwarf_reporter(dwarf_filename,
section_name);
dwarf2reader::CallFrameInfo parser(cfi, cfi_size,
&byte_reader, &handler, &dwarf_reporter,
eh_frame);
parser.Start();
return true;
}
bool LoadELF(const std::string &obj_file, MmapWrapper* map_wrapper,
ElfW(Ehdr) **elf_header) {
int obj_fd = open(obj_file.c_str(), O_RDONLY);
if (obj_fd < 0) {
fprintf(stderr, "Failed to open ELF file '%s': %s\n",
obj_file.c_str(), strerror(errno));
return false;
}
FDWrapper obj_fd_wrapper(obj_fd);
struct stat st;
if (fstat(obj_fd, &st) != 0 && st.st_size <= 0) {
fprintf(stderr, "Unable to fstat ELF file '%s': %s\n",
obj_file.c_str(), strerror(errno));
return false;
}
void *obj_base = mmap(NULL, st.st_size,
PROT_READ | PROT_WRITE, MAP_PRIVATE, obj_fd, 0);
if (obj_base == MAP_FAILED) {
fprintf(stderr, "Failed to mmap ELF file '%s': %s\n",
obj_file.c_str(), strerror(errno));
return false;
}
map_wrapper->set(obj_base, st.st_size);
*elf_header = reinterpret_cast<ElfW(Ehdr) *>(obj_base);
if (!IsValidElf(*elf_header)) {
fprintf(stderr, "Not a valid ELF file: %s\n", obj_file.c_str());
return false;
}
return true;
}
// Get the endianness of ELF_HEADER. If it's invalid, return false.
bool ElfEndianness(const ElfW(Ehdr) *elf_header, bool *big_endian) {
if (elf_header->e_ident[EI_DATA] == ELFDATA2LSB) {
*big_endian = false;
return true;
}
if (elf_header->e_ident[EI_DATA] == ELFDATA2MSB) {
*big_endian = true;
return true;
}
fprintf(stderr, "bad data encoding in ELF header: %d\n",
elf_header->e_ident[EI_DATA]);
return false;
}
// Read the .gnu_debuglink and get the debug file name. If anything goes
// wrong, return an empty string.
static std::string ReadDebugLink(const ElfW(Shdr) *debuglink_section,
const std::string &obj_file,
const std::string &debug_dir) {
char *debuglink = reinterpret_cast<char *>(debuglink_section->sh_offset);
size_t debuglink_len = strlen(debuglink) + 5; // '\0' + CRC32.
debuglink_len = 4 * ((debuglink_len + 3) / 4); // Round to nearest 4 bytes.
// Sanity check.
if (debuglink_len != debuglink_section->sh_size) {
fprintf(stderr, "Mismatched .gnu_debuglink string / section size: "
"%zx %zx\n", debuglink_len, debuglink_section->sh_size);
return "";
}
std::string debuglink_path = debug_dir + "/" + debuglink;
int debuglink_fd = open(debuglink_path.c_str(), O_RDONLY);
if (debuglink_fd < 0) {
fprintf(stderr, "Failed to open debug ELF file '%s' for '%s': %s\n",
debuglink_path.c_str(), obj_file.c_str(), strerror(errno));
return "";
}
FDWrapper debuglink_fd_wrapper(debuglink_fd);
// TODO(thestig) check the CRC-32 at the end of the .gnu_debuglink
// section.
return debuglink_path;
}
//
// LoadSymbolsInfo
//
// Holds the state between the two calls to LoadSymbols() in case we have to
// follow the .gnu_debuglink section and load debug information from a
// different file.
//
class LoadSymbolsInfo {
public:
explicit LoadSymbolsInfo(const std::string &dbg_dir) :
debug_dir_(dbg_dir),
has_loading_addr_(false) {}
// Keeps track of which sections have been loaded so we don't accidentally
// load it twice from two different files.
void LoadedSection(const std::string &section) {
if (loaded_sections_.count(section) == 0) {
loaded_sections_.insert(section);
} else {
fprintf(stderr, "Section %s has already been loaded.\n",
section.c_str());
}
}
// We expect the ELF file and linked debug file to have the same preferred
// loading address.
void set_loading_addr(ElfW(Addr) addr, const std::string &filename) {
if (!has_loading_addr_) {
loading_addr_ = addr;
loaded_file_ = filename;
return;
}
if (addr != loading_addr_) {
fprintf(stderr,
"ELF file '%s' and debug ELF file '%s' "
"have different load addresses.\n",
loaded_file_.c_str(), filename.c_str());
assert(false);
}
}
// Setters and getters
const std::string &debug_dir() const {
return debug_dir_;
}
std::string debuglink_file() const {
return debuglink_file_;
}
void set_debuglink_file(std::string file) {
debuglink_file_ = file;
}
private:
const std::string &debug_dir_; // Directory with the debug ELF file.
std::string debuglink_file_; // Full path to the debug ELF file.
bool has_loading_addr_; // Indicate if LOADING_ADDR_ is valid.
ElfW(Addr) loading_addr_; // Saves the preferred loading address from the
// first call to LoadSymbols().
std::string loaded_file_; // Name of the file loaded from the first call to
// LoadSymbols().
std::set<std::string> loaded_sections_; // Tracks the Loaded ELF sections
// between calls to LoadSymbols().
};
static bool LoadSymbols(const std::string &obj_file,
const bool big_endian,
ElfW(Ehdr) *elf_header,
const bool read_gnu_debug_link,
LoadSymbolsInfo *info,
Module *module) {
// Translate all offsets in section headers into address.
FixAddress(elf_header);
ElfW(Addr) loading_addr = GetLoadingAddress(
reinterpret_cast<ElfW(Phdr) *>(elf_header->e_phoff),
elf_header->e_phnum);
module->SetLoadAddress(loading_addr);
info->set_loading_addr(loading_addr, obj_file);
const ElfW(Shdr) *sections =
reinterpret_cast<ElfW(Shdr) *>(elf_header->e_shoff);
const ElfW(Shdr) *section_names = sections + elf_header->e_shstrndx;
bool found_debug_info_section = false;
// Look for STABS debugging information, and load it if present.
const ElfW(Shdr) *stab_section
= FindSectionByName(".stab", sections, section_names,
elf_header->e_shnum);
if (stab_section) {
const ElfW(Shdr) *stabstr_section = stab_section->sh_link + sections;
if (stabstr_section) {
found_debug_info_section = true;
info->LoadedSection(".stab");
if (!LoadStabs(elf_header, stab_section, stabstr_section, big_endian,
module)) {
fprintf(stderr, "%s: \".stab\" section found, but failed to load STABS"
" debugging information\n", obj_file.c_str());
}
}
}
// Look for DWARF debugging information, and load it if present.
const ElfW(Shdr) *dwarf_section
= FindSectionByName(".debug_info", sections, section_names,
elf_header->e_shnum);
if (dwarf_section) {
found_debug_info_section = true;
info->LoadedSection(".debug_info");
if (!LoadDwarf(obj_file, elf_header, big_endian, module))
fprintf(stderr, "%s: \".debug_info\" section found, but failed to load "
"DWARF debugging information\n", obj_file.c_str());
}
// Dwarf Call Frame Information (CFI) is actually independent from
// the other DWARF debugging information, and can be used alone.
const ElfW(Shdr) *dwarf_cfi_section =
FindSectionByName(".debug_frame", sections, section_names,
elf_header->e_shnum);
if (dwarf_cfi_section) {
// Ignore the return value of this function; even without call frame
// information, the other debugging information could be perfectly
// useful.
info->LoadedSection(".debug_frame");
LoadDwarfCFI(obj_file, elf_header, ".debug_frame",
dwarf_cfi_section, false, 0, 0, big_endian, module);
}
// Linux C++ exception handling information can also provide
// unwinding data.
const ElfW(Shdr) *eh_frame_section =
FindSectionByName(".eh_frame", sections, section_names,
elf_header->e_shnum);
if (eh_frame_section) {
// Pointers in .eh_frame data may be relative to the base addresses of
// certain sections. Provide those sections if present.
const ElfW(Shdr) *got_section =
FindSectionByName(".got", sections, section_names, elf_header->e_shnum);
const ElfW(Shdr) *text_section =
FindSectionByName(".text", sections, section_names,
elf_header->e_shnum);
info->LoadedSection(".eh_frame");
// As above, ignore the return value of this function.
LoadDwarfCFI(obj_file, elf_header, ".eh_frame", eh_frame_section, true,
got_section, text_section, big_endian, module);
}
if (!found_debug_info_section) {
fprintf(stderr, "%s: file contains no debugging information"
" (no \".stab\" or \".debug_info\" sections)\n",
obj_file.c_str());
// Failed, but maybe we can find a .gnu_debuglink section?
if (read_gnu_debug_link) {
const ElfW(Shdr) *gnu_debuglink_section
= FindSectionByName(".gnu_debuglink", sections, section_names,
elf_header->e_shnum);
if (gnu_debuglink_section) {
if (!info->debug_dir().empty()) {
std::string debuglink_file =
ReadDebugLink(gnu_debuglink_section, obj_file, info->debug_dir());
info->set_debuglink_file(debuglink_file);
} else {
fprintf(stderr, ".gnu_debuglink section found in '%s', "
"but no debug path specified.\n", obj_file.c_str());
}
} else {
fprintf(stderr, "%s does not contain a .gnu_debuglink section.\n",
obj_file.c_str());
}
}
return false;
}
return true;
}
// Return the breakpad symbol file identifier for the architecture of
// ELF_HEADER.
const char *ElfArchitecture(const ElfW(Ehdr) *elf_header) {
ElfW(Half) arch = elf_header->e_machine;
switch (arch) {
case EM_386: return "x86";
case EM_ARM: return "arm";
case EM_MIPS: return "mips";
case EM_PPC64: return "ppc64";
case EM_PPC: return "ppc";
case EM_S390: return "s390";
case EM_SPARC: return "sparc";
case EM_SPARCV9: return "sparcv9";
case EM_X86_64: return "x86_64";
default: return NULL;
}
}
// Format the Elf file identifier in IDENTIFIER as a UUID with the
// dashes removed.
std::string FormatIdentifier(unsigned char identifier[16]) {
char identifier_str[40];
google_breakpad::FileID::ConvertIdentifierToString(
identifier,
identifier_str,
sizeof(identifier_str));
std::string id_no_dash;
for (int i = 0; identifier_str[i] != '\0'; ++i)
if (identifier_str[i] != '-')
id_no_dash += identifier_str[i];
// Add an extra "0" by the end. PDB files on Windows have an 'age'
// number appended to the end of the file identifier; this isn't
// really used or necessary on other platforms, but let's preserve
// the pattern.
id_no_dash += '0';
return id_no_dash;
}
// Return the non-directory portion of FILENAME: the portion after the
// last slash, or the whole filename if there are no slashes.
std::string BaseFileName(const std::string &filename) {
// Lots of copies! basename's behavior is less than ideal.
char *c_filename = strdup(filename.c_str());
std::string base = basename(c_filename);
free(c_filename);
return base;
}
} // namespace
namespace google_breakpad {
bool WriteSymbolFile(const std::string &obj_file,
const std::string &debug_dir, FILE *sym_file) {
MmapWrapper map_wrapper;
ElfW(Ehdr) *elf_header = NULL;
if (!LoadELF(obj_file, &map_wrapper, &elf_header))
return false;
unsigned char identifier[16];
google_breakpad::FileID file_id(obj_file.c_str());
if (!file_id.ElfFileIdentifierFromMappedFile(elf_header, identifier)) {
fprintf(stderr, "%s: unable to generate file identifier\n",
obj_file.c_str());
return false;
}
const char *architecture = ElfArchitecture(elf_header);
if (!architecture) {
fprintf(stderr, "%s: unrecognized ELF machine architecture: %d\n",
obj_file.c_str(), elf_header->e_machine);
return false;
}
// Figure out what endianness this file is.
bool big_endian;
if (!ElfEndianness(elf_header, &big_endian))
return false;
std::string name = BaseFileName(obj_file);
std::string os = "Linux";
std::string id = FormatIdentifier(identifier);
LoadSymbolsInfo info(debug_dir);
Module module(name, os, architecture, id);
if (!LoadSymbols(obj_file, big_endian, elf_header, true, &info, &module)) {
const std::string debuglink_file = info.debuglink_file();
if (debuglink_file.empty())
return false;
// Load debuglink ELF file.
fprintf(stderr, "Found debugging info in %s\n", debuglink_file.c_str());
MmapWrapper debug_map_wrapper;
ElfW(Ehdr) *debug_elf_header = NULL;
if (!LoadELF(debuglink_file, &debug_map_wrapper, &debug_elf_header))
return false;
// Sanity checks to make sure everything matches up.
const char *debug_architecture = ElfArchitecture(debug_elf_header);
if (!debug_architecture) {
fprintf(stderr, "%s: unrecognized ELF machine architecture: %d\n",
debuglink_file.c_str(), debug_elf_header->e_machine);
return false;
}
if (strcmp(architecture, debug_architecture)) {
fprintf(stderr, "%s with ELF machine architecture %s does not match "
"%s with ELF architecture %s\n",
debuglink_file.c_str(), debug_architecture,
obj_file.c_str(), architecture);
return false;
}
bool debug_big_endian;
if (!ElfEndianness(debug_elf_header, &debug_big_endian))
return false;
if (debug_big_endian != big_endian) {
fprintf(stderr, "%s and %s does not match in endianness\n",
obj_file.c_str(), debuglink_file.c_str());
return false;
}
if (!LoadSymbols(debuglink_file, debug_big_endian, debug_elf_header,
false, &info, &module)) {
return false;
}
}
if (!module.Write(sym_file))
return false;
return true;
}
} // namespace google_breakpad